Data Preparation for
Creating an Al-ready
Quality Data

May 21, 2025

Deborah Duran, PhD • NIMHD Mark Aronson, PhD • NIMHD Mohammad Arifur Rahman, MS • NIMHD

Experience poll

Please check your level of experience with the following:

	None	Some	Proficient	Expert
Python				
R				
Cloud computing				
Terra				
Health disparities research				
Health outcomes research				

Interest poll

I am interested in (check all that apply):

□ Learning about Health Disparities and Health Outcomes research to apply my data science skills

□ Conducting my own research using Al/cloud computing and publishing papers

□ Connecting with new collaborators to conduct research using Al/cloud computing and publish papers

 \Box Learning to use AI tools and cloud computing to gain new skills for research using Big Data

□ Learning cloud computing resources to implement my own cloud

□ Developing ethical AI strategies

□ Other

What is SCHARE?

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Science Collaborative for Health disparities and Artificial intelligence Reduction of Errors

Register: nimhd.nih.gov/schare

SCHARE is a cloud-based population science data platform designed to accelerate population health research, including chronic diseases, health disparities & health outcomes by utilizing transparent artificial intelligence (AI) approaches with a focus on the reduction of errors in the use and reuse of models designed to accelerate innovative research that includes place-based factors and biologics for whole-person health discoveries.

SCHARE aims to fill five critical gaps:

- Leverage population science, place-based, and behavioral Big Data and cloud computing tools to foster a paradigm shift in population health research to generate innovative whole-person health discoveries using AI
- Advance use of transparency and sophisticated inquiry to develop innovative strategies and differing perspectives to reproducibility and to reduce AI errors
- Upskill novice untrained users in data science through cloud computing skills training, cross-discipline mentoring, and multi-career level collaborating on research
- Provide a data science cloud computing resource and data center for community colleges, and low resource institutions and organizations
- Offer a project data repository centered on core common data elements for enhanced data interoperability and compliance with NIH Data Management and Sharing Policy

Google Platform Terra Interface

- Secure workspaces
- Data storage
- Computational resources
- Tutorials (how to)
- Copy-and-paste code in Python and R
- Learning Terra on SCHARE prepares you to use other NIH platforms

PREPARING FOR AI RESEARCH AND HEALTHCARE USING BIG DATA

Mapping across cloud platforms with Terra interface for collaborative research

Terra recommends using **Chrome** Must have a **Gmail** friendly account

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

SCHARE Components

SCHARE co-localizes within the cloud:

- 1. Datasets relevant to health disparities, health care delivery, and health outcomes research, including social determinants of health and other social science behavioral data
- 2. A project data repository for NIH-funded projects centered on Core Common Data Elements for enhanced data interoperability and compliance with NIH Data Management and Sharing policy
- 3. Secure, collaborative workspaces and for researchers and relevant collaborators
- 4. Computational capabilities for collaboratively evaluating designing and assessing fit-forpurpose utilization of datasets and algorithms to generate AI models that are effective and efficient

SCHARE Terra Platform

BE A PART OF THE FUTURE

KNOWLEDGE GENERATION FOR POPULATION HEALTH

OF

National/Federated Datasets

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION FOR POPULATION HEALTH

SCHARE Ecosystem structure

Researchers can access, link, analyze, and export **a wealth of SDoH and population science related datasets** within and across platforms relevant to research about health disparities, health care delivery, and health outcomes, including:

300+ Bublic Bublic Bublic		Publicly accessible, federated, de-identified datas or hosted by Google through the Google Cloud P			
FEDERATED PUBLIC DATASETS	Galasets	Examples: Behavioral Risk Factor Surveillance System (BRFSS) American Community Survey (ACS)			
CDE FOCUSED	Project datasets	Publicly accessible and controlled-access, funded program/project datasets using <u>Common Data Elements</u> shared by NIH grantees and intramural investigators to comply with the NIH Data Sharing Policy			
REPOSITORY		Examples : Forthcoming datasets such as the Jackson Heart Study (JHS)	Innovative Approach: CDE Concept Codes Uniform Resource Identifier (URI)		

SCHARE Ecosystem

Datasets are categorized by content based on the CDC **Social Determinants of Health categories**:

- 1. Economic Stability
- 2. Education Access and Quality
- 3. Health Care Access and Quality
- 4. Neighborhood and Built Environment
- 5. Social and Community Context

with the addition of:

- Health Behaviors
- Diseases and Conditions

Workspaces > ScHARe/ScHARe > Data						
DASHBOARD DATA ANAL	LYSES	WORKFLC	DWS JOB HISTORY			
IMPORT DATA		🖍 EDIT	OPEN WITH È→ EXPORT 🏟 SETTINGS 0 row	s selected 📃		
TABLES	~	•	EconomicStability_id	SizeGb 🕕		
Search all tables	Q		FoodAccessResearchAtlasData2010	0.0297		
			CurrentPopulationSurvey_FoodSecuritySupplement_2011	0.184		
A_MainTableDatasets (250)			CurrentPopulationSurvey_FoodSecuritySupplement_2012	0.185		
DiseaseAndConditions (27)	:		CurrentPopulationSurvey_FoodSecuritySupplement_2013	0.184		
EconomicStability (62)	(i)		CurrentPopulationSurvey_FoodSecuritySupplement_2014	0.188		
EducationAccessAndQuality (54)	:		AHS_National_Household_2015	0.491		
HealthBehaviors (17)	()		AHS_National_Mortage_2015	0.002		
HealthCareAccessAndQuality (36)	(i)		AHS_National_Person_2015	0.057		
MultipleCategories (38)	(i)		AHS_National_Project_2015	0.004		
NeighborhoodAndBuiltEnvironment (11)	(i)		CurrentPopulationSurvey_FoodSecuritySupplement_2015			
SocialAndCommunityContext (8)	:	_				

SCHARE Ecosystem: Public datasets

Examples of interesting datasets include:

- American Community Survey (U.S. Census Bureau)
- US Census Data (U.S. Census Bureau)
- Area Deprivation Index (BroadStreet)
- **GDP and Income by County** (Bureau of Economic Analysis)
- US Inflation and Unemployment (U.S. Bureau of Labor Statistics)
- U.S. Chronic Disease Indicators (U.S. Census Bureau)
- Point-in-Time Homelessness Count (U.S. Dept. of Housing and Urban Development)
- National Mental Health (SAMHSA)
- US Residential Real Estate Data (House Canary)
- Center for Medicare and Medicaid Services Dual Enrollment (U.S. Dept. of Health & Human Services)
- National Mental Health (SAMHSA)
- Health Professional Shortage Areas (U.S. Dept. of Health & Human Services)
- CDC Births Data Summary (Centers for Disease Control)
- BRFSS Behavioral Risk Factors
- Community Resilience Estimates: Community resilience estimates calculated by modeling individual and household characteristics
- Adult Indicators for Oral Health (NOHSS)
- Alzheimer's Disease and Health Aging Data (NIH)

Data Analytic and AI Tools

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION FOR POPULATION HEALTH

SCHARE Terra interface: Analyses (Notebooks)

Notebooks for analytics and tutorials

	Workspaces > ScHARe/ScHARe > SPACES Analyses				
DASHBOARD DATA	ANALYSES WORKFLOWS JOB HISTORY				
Your Analyses	+ START				
Application	Name 1				
Jupyter Jupyter	00_List of Datasets Available on ScHARe.ipynb				
Jupyter Jupyter	01_Introduction to Terra Cloud Environment.ipynb				
Jupyter Jupyter	02_Introduction to Terra Jupyter Notebooks.ipynb				
Jupyter Jupyter	03_R Environment setup.ipynb				
Jupyter Jupyter	04_Python 3 Environment setup.ipynb				
Jupyter Jupyter	05_How to access plot and save data from public BigQuery datasets using R.ipynb				
Jupyter Jupyter	06_How to access plot and save data from public BigQuery datasets using Python 3.ipynb				

Modular codes

Easy-to-use copy and paste analytics

	Workapeces + ScHARe/ScHARe +
DASHBOARD DATA ANALYS WORKFLOWS	Suggested Workflows haplotypecaller-gvcf-gatk4 Runs HaplotypeCaller from GATK4 in GVCF mode on a single sample
Find a Workflow	mutect2-gatk4 Implements GATK4 Mutect 2 on a single tumor- normal pair
	processing-for-variant-discovery-gatk4
	Find Additional Workflows Dockstore Browse WDL workflows in Dockstore, an open platform used by the CA4GH for sharing Docker- based workflows

Modular codes developed for reuse

Data in SCHARE Repository Analyzed in SCHARE Terra

SCHARE Model Notebooks under Analysis Tab

"Table of Contents"

Describes the purpose of all other notebooks in this section

Describes what a python environment is and copy & paste code to set yours up

b. 03_How to access plot and save data from ScHARe hosted datasets using Python 3.ipynb

Python code model notebooks (SCHARE Workspace -> Analyses -> Section B) b. 02_How to access plot and save data from public BigQuery datasets using Python 3.ipynb

Copy & paste code for accessing datasets hosted by Google BigQuery

b. 04_How to upload access plot and save data stored locally using Python3.ipynb

Copy & paste code for accessing data on your local computer

Secure Workspaces for Single and Collaborative Research

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION FOR POPULATION HEALTH

SCHARE Terra interface: secure workspace

orkspaces 🔂		Share Workspace		
		User email		
licated spaces for you and your collaborators to ac	cess and analyze data	Add people or group	05	ADD
Recently Viewed	~	Current Collaborators		
icHARe	ScHARe Thin	calzonil2@nih.gov		
/iewed Apr 14, 2023, 11:58 AM	Viewed Apr 10,	Owner	 ✓ Can share ✓ Can compute 	
earch by keyword	Tags	ScHARe-Contractors@f	irecloud.org	
Y WORKSPACES (42) NEW AND INTERESTING		Writer	Can share	×
		ScHARe-Read-Only-Acc	ess@firecloud.org	
Name		Reader	Can share	×
ScHARe				

- Secure workspace for self or collaborative research
- Assign roles: owner, writer, reader
- Host own data and code
- Own project costs

Data Repository

NIH Data Management and Sharing Policy

BE A PART OF THE FUTURE

KNOWLEDGE GENERATION FOR POPULATION HEALTH

The Four Data Lifecycle Stages

The SDR is here to support your research and your data throughout all stages of the data lifecycle. Our touchpoints can be contextualized by thinking about your data in these four stages.

Dawn

Dataset Creation

Researchers can choose to store their data themselves, uploading it upon study completion, or use the SDR as a storage interface.

Midday

Dataset Submission

Researchers submit their data for public sharing on the SDR, creating a controlled-access version if the dataset contains sensitive information.

Golden Hour

Dataset Access

Researchers use the public version of datasets on the SDR, or request access to controlled-access data, for secondary studies.

Sunset

Dataset Archival

Once the dataset meets the archival requirements, the dataset collection is removed from the SDR, and the underlying data is archived.

Key Features of the SCHARE Data Repository

Upload your own data

Store collected data and annotate with a data dictionary. Align data to the ScHARe CDEs.

Harmonize data to CDEs

Map uploaded data to CDEs. Join your data with project or federated data via CDEs.

Browse for data

Find relevant federated national datasets or other project data. Manipulate and aggregate data for analysis

Filter, sort, and select subsets for specific purposes. Link and aggregate datasets. Control privacy levels and data sharing

Share confidential data among colleagues. Share public access data with the research community.

Data Analysis via SCHARE Terra or local analysis platform

SCHARE CDEs Human & Machine Readable

Common Data Element (CDE) is a standardized, precisely defined question, paired with a set of allowable responses, used systematically across different sites, studies, or clinical trials to ensure consistent data collection

X,

mish unit of

measure or

Semantically Defined: (Human Readable)

Each are semantically defined by a standardized coding system for shared meaning

Use of international/national coding systems – LOINC, UMLS, SemNet, FHIR, NCIt Colon: sentence

punctuation or

biological organ?

Alcohol:

disinfecting

or drinking?

Coded (Machine Readable) : Use URI approach of associated codes that can be mapped across coding systems to create data interoperability

Pipes to separate data points (i.e. flower plant succulent grass tree)

Human & Machine Readable

SCHARECore CDEs Phenx Toolkit

- Age
- Birthplace
- Zip Code
- Race and Ethnicity
- Sex at Birth
- Marital Status
- Education
- Annual Household Income
- Household Size

- English Proficiency
- Disabilities
- Health Insurance
- Employment Status
- Usual Place of Health Care
- Financial Security / Social Needs
- Self-Reported Health
- Health Conditions (and Associated Medications/Treatments)
- NIMHD Framework*
- Health Disparity Outcomes*

* Project Level CDEs

SCHARE has developed **Common Data Elements** to ensure consistent data collection across studies, facilitate interoperability, and link data from different sources

PhenX Toolkit: www.nimhd.nih.gov/resources/phenx/

NIH CDE Repository:

cde.nlm.nih.gov/home

NIH Endorsed

SCHARE SDR Collections & Associations

Collections

- Each project establishes its COLLECTION:
- Own data (ongoing or final)
- Single or collaborative
- Data Documentation
- Privacy controls
- CDE mapping
- Metadata

Data Submission can be ongoing or at end of project.

- Can provide resource as a data center (ongoing)
- Fulfills Data Management and Sharing Policy (final)

Associations

- ASSOCIATIONS comprised of multiple COLLECTIONs:
 - Creates parent collection
 - Own data (ongoing or final)
 - Single or collaborative
 - Data Documentation
 - Privacy controls
 - CDE mapping
 - o Metadata
- Adds Collections to the Association

sc •	hare.demo2 / Test Collection 3/17/2025 / LIVE	のう☆ Operations	
iections >	Test Collection 3/17/2025 Abstract This is a sample abstract designed to test the formatting and layout. It includes various elements like headings, subheadings, and text in order to evaluate the readability and structure of the document. The content itself is a placeholder and does not carry any specific meaning but serves as a tool for previewing how text will appear in the final layout. It helps assess how the document handles large anounts of text, ensuring that the design is both functional and visually appealing. The goal is to test the overall presentation before the real content is added. Research Areas • Health Disparity Outcomes • Nearch Focuse • Nigher incidence and/or previewing editer onset or more aggressive progression of disease Invests of Influence • Domains of Influence Maindual • Domains of Influence Maindual • Domains of Influence Maindual • Mainth Care Systems and Clinical Care	Access Level ①	Data Access & Data Readiness Interoperability Search
	Links and Documents Data Items	Age (Addrescents)	Metadata
	> Data Access	Metadata	-

By default, all collections start out as **Private**.

Data Interoperability - CDEs

- All NIH funded data sets are mapped to the SCHARE CDE
- More mapped better interoperability

CDE mapping icon

	Access Level ()
	Analysis Readiness
•	CDE Compliance - ScHARe ① 8 / 17 CDEs assigned
	Tags # Topics tagged in this collection
	Metadata

Access Levels and Sharing Data

The access level of a collection defines the maximum permissions that can be used to share it with others. You have control over how your data is shared on the ScHARe Data Repository.

ers, groups, and collections with	ROLE	
Karl Gutwin (karl9152)	ADMIN	î
are with: Users Groups	Collections	
s collection's access level is cur	rrently set to Private . s, you must first set the access level to Confidential .	Make Confidential

By default, all collections start out as **Private**.

- Private: Only the collection's owner can access
- Confidential: The collection can be shared with named users
- Controlled: The collection can be shared with members of a controlled access group, as well as named users
- **Public**: The collection can be read by any user, including those not logged in; it can also be shared with named users

Data Readiness

The readiness level delineates the preparation given a data set.

By default, all collections start out as Raw

- Raw: data not cleaned
- Cleaned: basic data cleaning, missing data, errors, labels, outliers etc
- Al Ready: includes all of cleaned data and imputations for missingness, aggregation of data sets for comprehensiveness, proxy variables, etc.

SCHARE AI Tools - Metadata

import pyschare as sc labels= sc.data_labels

Project Title:

Filename:

Format

URL

Domain

Keywords:

Geography:

Time Method:

Rows

Data Collection Method:

Type

Project Description:

summary.

20.0 17.5 Metadata, and model documentation tools 15.0 12.5 8 10.0 -7.5 5.0 2.5 -0.0 Enter the project title and a brief description or abstract in the provided text boxes. Once done, press the 'Save' button to generate the dataset facts Femal Mal Sam None of these describe n Prefer not to ansa Fill in the metadata fields with the relevant information about your dataset, such as filename, format, URL, and domain, After completing the fields, click the "Save" button to save and display the metadata table

generated based on your selections. Click the "Upload Data Dictionary" button to get started. 🏦 Upload Data Dictionary (0 Variable Names: Variable Descriptions: Upload your dataset (CSV format), and click the 'Show Data' button to view the dataset. Using the dataset's variable names, input the names of ordinal,

Variable A: english proficiency

nominal, continuous, and discrete variables, separated by commas (e.g., Variable_a, Variable_b, Variable_c). After entering the variables, press the 'Show Statistics Table' button to generate and view the statistical summaries

Column1 entity:A_MainTableDatasets_id Categories Data DataDictionary FileFormat Homepage SizeGb gs://fcgs://fo-securesecure-Health d8e25d73d6e25d73-2021FoodSecurityData Access and 4b50-4b50-4dbc-4dbc ac10-Quality ac10 ec68998. 20088nc as://fo secure-d8e25d73-4b50gs://fc-secure-Healt d6e25d73-4b50-4dbc-Care XLSX https://www.meps.ahrq.gov/mepsweb/data stats/d... 0.118 Exp 2021FullYearConsolidatedData 1 1 Access and 4dbc ac10 Quality ac10 ec68998. ec68998.

Choose two variables from the dropdown menus and click the 'Show Plots' button to create pair plots that visualize the distributions and relationships between the selected variables.

~

Variable B: gender

Don't knor Not at al Not wel Befuse Verv v Not well Refused Not at all Very well Well Don't know english proficiency Upload your data dictionary file (CSV format) and select the appropriate columns for variable names and descriptions. The variables table will be of these describerateefer not to answedale Female Nonbinary gender 🏦 Upload Data (1) how Dat XLSX https://www.meps.ahrq.gov/mepsweb/data_stats/d... 0.806 Exp

Project Data

Collections are a place where you can describe and store your data and any related metadata and federated data.

Can be shared with colleagues

Privacy controls & published when you're ready.

SCHARE Data Repository Multi-Site Data

ScHA

C Recent

My Col

☆ Starred

Data Aggregation Tool

Advanced Explorer Table Dictional	ry Meta 3 KB 21 hours ago	text/prql status: 🕚	Item Oper
Source data from: tes	st_data.xlsx	Ţ	
其 Join Select			
Join Table	Dataview Column	Matching Column from	Join Table
mh_svi_county-ScHARe	Postal Zip Code	<pre>\$ zip_code </pre>	۵
Available Columns	Selected Columns		
Available Columns	Selected Columns		
= Age Units ()	= Participant ID		
= Birthplace - US	= Age 🚯		
= Birthplace - US = Birthplace - Outside US	= Age = Postal Zip Code		
= Birthplace - Outside US	= Postal Zip Code		
Birthplace - Outside USRace/Ethnicity Self-Identification	= Postal Zip Code = Sex at Birth (3)		

PUBLICLY AVAILABLE SPRING 2025

SCHARE AI Tools

Authenticate

Gemini Assistant

Use **Gemini Assistant** to launch a simple Q&A chat window to get assistance with writing your data analysis code. The chat interface is powered by the Gemini model and is designed to answer questions related to assisting novice coders with writing analysis code. Type your question in the box

and click the Generate button to call the model and generate an output.

Note: while the data you send through this tool and data sent back are protected under Terra's Enterprise Google Cloud permissions, and are not reused by Google for future model training, we advise not sending any sensitive information (e.g. PII or PHI) through the model. Sticking to general questions or inserting dummy variable names to your questions are good practices to ensure the privacy of your data.

Select Model	Gemini 1.5 Flash	~
Select Location	us-central1	~
Question:	Type your coding question here	
Generate		

SCHARE PySCHARE Python Package

PySCHARE package to search datasets and variables, subset, save, and visualize datasets

DataVisual()

Use the dropdown menus to select a dataset and configure your plot parameters.

- Bar, count, box, boxen, strip, swarm, and violin plots typically require a categorical variable on the X-axis (or hue) and a numeric variable on the Y-axis; see the categorical tutorial for details.
- Scatter and line plots call for numeric variables on both axes (e.g., time vs. measurement); refer to the relational tutorial.
- Histograms typically need a single numeric variable on the X-axis and are described in the distributions tutorial.

Use "hue" to differentiate categories by color, "style" to vary markers or lines, and "size" to scale markers based on another variable. The "col" and "row" options create subplots (facets) for comparison across categories, while the "multiple" parameter (e.g., "dodge," "stack," "fill") manages overlapping data displays.Once the plot type and settings are selected, click "Show Plot" to visualize the results.

Select Dataset	None 2021FoodSecurityData 2021FullVearConsolidatedData 2021JobsFileData	Î	Select X	· · · ·
	2021MedicalConditionsData 2021PersonRoundPlanPublicUseData 2022FoodSecurityData 2022FullCharacteristicsData	-	Select Hue	
	2022FullYearConsolidatedData		Select Style	~
Select Plot	None Bar Plot Box Plot		Select Size	~
	Boxen Plot Count Plot Histogram Line Plot	l	Select Column	· · · · · · · · · · · · · · · · · · ·
	Point Plot Scatter Plot Strip Plot	÷	Select Layer	Layer 🗸

Show Plot

DataSubset()

Use the Select Dataset dropdown to choose a dataset. The available variables will be dynamically populated when you select options in the Select Variables dropdown. After selecting the desired variables from the Select Variables dropdown, you may visualize the data by clicking the Show Data button. This will display the first few rows of the specific columns selected in the output area below.

To save the displayed data, click the Save Data button. This action will store the selected data in your bucket and confirm the successful operation in the output area. Please make sure you have made selections in both the dataset and variables dropdowns before attempting to save.

Select Dataset	Select Variables	
PLACES_500Cities_2021 PLACES_500Cities_2022 PLACES_500Cities_2023 PLACES_500Cities_2024 YRBSS_YouthRiskBehavior_2015 YRBSS_YouthRiskBehavior_2017	Q1 Q2 Q3 Q4 Q5 Q6	
YRBSS_YouthRiskBehavior_2019 YRBSS_YouthRiskBehavior_2021	Q7 Q8	Show Data
YRBSS_YouthRiskBehavior_2023	Q9 Q10	Save Data

Calculate()

Use the Select Dataset dropdown to choose a dataset. The available variables will be dynamically populated when you select options in the Select Variables dropdown. After selecting the desired variables from the Select Variables dropdown, click the Describe Data button. This will display the summary statistics of the specific columns selected in the output area below.

Select Dataset		Select Variables	
PLACES_500Cities_2021		Q1	
PLACES_500Cities_2022 PLACES 500Cities 2023		Q2	
PLACES_500Cities_2024		Q3 Q4	
YRBSS_YouthRiskBehavior_2015 YRBSS_YouthRiskBehavior_2017		Q5	
YRBSS YouthRiskBehavior 2019		Q6 Q7	
YRBSS_YouthRiskBehavior_2021	Ť,	Q8	
YRBSS_YouthRiskBehavior_2023		Q9	-
	► 1	Q10	

Describe Data

Novice **training webinars** for data science, cloud computing and research using Big Data

Think-a-Thons

Goals:

- Upskill novice untrained users in data science and cloud computing
- Foster a research paradigm shift to use
 Big Data in population health research, including health disparities/health outcomes
- Promote use of Dark Data (unused data epidemiologic studies)

1. TUTORIAL AND TARGETED THINK-A-THONS

- Monthly sessions (2 1/2 hours)
- Instructional/interactive
- Designed for new/experienced users
- Networking
- Mentoring and coaching
- Topics include:
 - Data Science 101
 - Terra
 - Population: place- based factors

Launched April 2024

3rd

Wednesday

of every

month

- Common Data Elements
- AI readiness
- Transparent AI

- Multi-career (students to senior investigators)
- Multi-discipline (data scientists and researchers)
- Featured datasets with guest experts leads
- Guest experts in topic areas, analytics, data sources etc. to provide guidance
- Generate research idea decide design, datasets and analytics
- Learn Ethical AI
- Publications

Register: bit.ly/think-a-thons

Next Think-a-Thons:

bit.ly/think-a-thons

Register for SCHARE:

https://bit.ly/registerschare

<u>schare@mail.nih.gov</u>
The Importance of Data Preparation

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Preparation of Al-ready datasets enables data reuse

*We encourage all SCHARE members to create .csv files when uploading to the SCHARE Data Repository

Data preparation is critical for data-driven nature of AI models

Al models are compelling tools for research analysis because they...

determine variable importance from many (100s-1000s) of variables

make fewer assumptions about the data going into them

But these advantages come with drawbacks because...

data quality is critical because they do not rely on statistical theory and only learn patterns from data

the need for large datasets, necessitating linking across datasets, requires consistency in semantics and data standards

Understanding the requirements for Al-ready data informs data collection practices

The importance of data preparation has led to a bevy of roles – this is a specialized skill set that can/should be on grant applications

Visualizing Raw Data

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Data Exploration

Data Exploration Goals

Understand what is in the data

Assess data for project fit

Reduce algorithm error

Data Exploration Steps

Inspect data using simple descriptions and statistics

See raw data table

df.head()
df.tail()

Age	Blood Pressure	Cholesterol
63	137.0	140.0
76	144.0	217.0
53	96.0	288.0
39	121.0	168.0
67	112.0	281.0
32	111.0	195.0
45	128.0	302.0
63	110.0	238.0
43	112.0	154.0
<mark>4</mark> 7	117.0	272.0
	63 76 53 39 67 32 45 63 43	76 144.0 53 96.0 39 121.0 67 112.0 32 111.0 45 128.0 63 110.0 43 112.0

Check Data Types

df.info()

Range	eIndex: 1000 entries	, 0 to 999			
Data	ata columns (total 10 columns):				
#	Column	Non-Null Count	Dtype		
0	Age	1000 non-null	int64		
1	Gender	1000 non-null	object		
2	Blood Pressure	970 non-null	float64		
3	Cholesterol	970 non-null	float64		
4	Diabetes	1000 non-null	int64		
5	Smoking	1000 non-null	int64		
6	Exercise Frequency	970 non-null	object		
7	BMI	970 non-null	float64		
8	Family History	1000 non-null	int64		
9	Heart Disease	1000 non-null	int64		
	es: float64(3), int6 ry usage: 78.2+ KB	4(5), object(2)			

Compute summary statistics

df.describe()

	Age	Blood Pressure	Cholesterol
count	1000.000000	970.000000	970.000000
mean	52.852000	120.970103	202.490722
std	16.069796	18.164997	53.375961
min	25.000000	67.000000	33.000000
25%	39.750000	110.000000	166.000000
50%	53.000000	120.000000	201.500000
75%	66.000000	130.000000	237.000000
max	80.000000	252.000000	420.000000

Inspection

Data Exploration

Data Exploration Goals

Understand what is in the data

Assess data for project fit

Reduce algorithm error

Data Exploration Steps

Single variable distributions inform downstream cleaning steps

Visualize distributions with histograms and boxplots

sns.histplot()

Visualize trends for timeseries data

plt.plot()

Categorical or Binary Data

Visualize distributions with bar charts and value counts

¢

Single variable

Data Exploration

Data Exploration Goals

Understand what is in the data

Assess data for project fit

Reduce algorithm error

Data Exploration Steps

Examining variable relationships inform feature selection

See variable relationships with scatterplots and correlation matrices

plt.matshow(df.corr())

Categorical or Binary Data

See variable relationships with crosstabulation tables

pd.crosstab()

Variable relationships

Data Exploration

Data Exploration Goals

Understand what is in the data

Assess data for project fit

Reduce algorithm error

Data Exploration Steps

Slido Poll

Which of the following plot types is/are most appropriate for visualizing the distribution of a **categorical variable**?

- a) Bar plot
- b) Histogram
- c) Box plot
- d) Pie chart
- e) Both A and D

Data Cleaning 101

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Data Cleaning

Data Cleaning Goals

Meet baseline data requirements for model training

Ensure data quality to reduce model error

Enforce data format and model fit

Enable data interoperability

Data Cleaning Steps

Encode Non-numeric Variables

Handle Outliers

Understanding missing data

What is Missing Data?

CustomerID	Age	Income	City
001	28	NaN	London
002	NULL	75000	Paris
003	45	82000	

Understanding missing data

Common representation of Missing Data

- NaN (Not a Number)
- NULL or None
- Empty String ("")
- Special Indicators like 9999, -99
- Blank or Space

Types of Missing Data

Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

Types of Missing Data

Missing Completely at Random (MCAR)

Missing at Random (MAR)

The missingness of data is not related to any other variable in the dataset. It is just random The missingness of a variable is related to some other variables in the dataset but not the variable itself

Missing Not at Random (MNAR)

The missingness of a variable is related to the variable itself

Problem

A participant accidentally skipped cholesterol test due to lab error

Cholesterol data is missing more often in younger patients with no family history Patients with very high cholesterol tend to hide results due to stigma

Understanding missing data

Visualize missing values pattern

msno.matrix(raw_data,ax=ax,sparkline=False)

msno.heatmap(raw_data, cmap='bwr',ax=ax)

Types of Missing Data

Missing Completely at Random (MCAR)

Missing at Random (MAR)

The missingness of data is not related to any other variable in the dataset. It is just random

The missingness of a variable is related to some other variables in the dataset but not the variable itself

Cholesterol data is missing more often in younger patients with no family history

Missing Not at Random (MNAR)

The missingness of a variable is related to the variable itself

xample

²roblem

A participant accidentally skipped cholesterol test due to lab error

- Deletion
- Simple Imputation

- Multiple Imputation ٠
- Predictive Imputation ٠

Patients with very high cholesterol tend to hide results due to stigma

- Advanced Model Based Imputation
- Use of Proxy Variables
- Sensitivity Analysis

Deletion

Imputation

Advanced Techniques

• This is the simplest method, which involves deleting the records with missing values.

Row-wise Deletion (or "Listwise Deletion")

Action

Removes entire observations (rows) that contain any missing values

df.dropna(inplace=True)

- Data is Missing Completely at Random (MCAR)
- Missing data represents a small percentage of the dataset
- Pro: Quick implementation
- **Con:** Reduces sample size, potentially decreasing statistical power
- **Con:** Can skew results (e.g., if missing values are related to specific groups)

Column-wise Deletion (or "Variable Deletion")

Removes features (columns) with excessive missing values threshold = 50 df_column_drop = df.dropna(axis=1, thresh=len(raw data) * (threshold / 100))

- When specific variables have high percentages of missing data
- When those variables aren't critical to your analysis
- **Pro:** Maintains the full observation count
- Con: Completely loses information from deleted variables
- **Con:** May eliminate potentially important predictors from the model

Deletion

Imputation

Advanced Techniques

- Imputation is the process of substituting missing data with substituted values.
- There are many imputation methods for replacing the missing values.

Simple Imputation TechniquesPredictive Imputation Techniquesdf[``var"].fillna(df[``var"].median())df[df[``var"].isnull()]=
rf regressor.predict(df[df[``var"].isna()])

Pros

- Easy and fast to implement
- Preserves variable distributions

Cons

• Ignores feature relationships

Pros

 makes use of correlation information between variables

Cons

 Computationally expensive to implement

Deletion

Imputation

Advanced Techniques

Advanced Imputation Techniques

df["var"]=

```
knn_impuer.fit_transform(df["var"])
```

Pros

 makes use of correlation information between variables

Cons

 Computationally expensive to implement

Proxy Variables

```
df["proxy"] =
    pd.read_csv('related_dataset.csv')
```

Pros

 make use of a more widely available metric with more complete data

Cons

- proxy variable may not capture important correlations of the original variable
- It may not fully represent the intentionstakeholders input on this to handle properly

Deletion

Imputation

Advanced Techniques

Slido Poll

You're analyzing survey data from a health study. You notice that responses to the question "Do you consume alcohol?" are missing more frequently among participants over the age of 60. However, within each age group, the missingness appears random.

Based on this information, what is the most likely type of missingness?

- a) Missing Completely at Random (MCAR)
- b) Missing at Random (MAR)
- c) Missing Not at Random (MNAR)
- d) Not Missing this is expected behavior

Imputation

Advanced Techniques

Data Cleaning

Data Cleaning Goals

Meet baseline data requirements for model training

Ensure data quality to reduce model error

Enforce data format and model fit

Enable data interoperability

Data Cleaning Steps

Deal with Missing Data

Handle Outliers

Encode Non-numeric Variables

Strategies for handling outlier data

Handle Outliers

Remove outliers beyond set bounds

- **Pro:** prevent model from over-fitting
- **Con:** may distort the distribution

Use models or scaling less sensitive to outliers

- Decision Trees
- Random Forest
- XGBoost
- AdaBoost
- Naive Bayes
 - Pros: preserves original data distribution
 - Cons: limits model choice

Transform data to reduce outlier impact

- **Pro:** improve data normality while retaining points
- Con: reduce variance and potentially biases data

Impute or replace outliers

- **Pros:** preserve the features distribution
- **Cons:** lose information from outliers

Data Cleaning

Data Cleaning Goals

Meet baseline data requirements for model training

Ensure data quality to reduce model error

Enforce data format and model fit

Enable data interoperability

Data Cleaning Steps

Encode Non-numeric Variables

Handle Outliers

What are Non-Numeric Variables

Non-numeric variables, also referred to as **categorical variables**, are data types that represent categories or distinct groups, rather than quantitative values. These variables are often used to capture qualitative attributes in a dataset.

Nominal Variables

- Blood type: A, B, AB, O
- Marital status: Single, Married, Divorced, Widowed
- Eye color: Brown, Blue, Green, Hazel

Ordinal Variables

- Education level: High School, Bachelor's, Master's, PhD
- Movie ratings: 1-star, 2star, 3-star, 4-star, 5-star
- Economic status: Lowincome, Middle-income, High-income

- Yes/No responses
- True/False values
- Pass/Fail outcomes
- Employed/Unemployed status
- Presence/Absence of a condition

Turning categorical variables numeric is called encoding

One-hot Encoding

Sex	Male	Female
Μ	1	0
F	0	1
F	0	1
Μ	1	0

Pros

 good for data where order doesn't matter (nominal)

Cons

 adds many, sparse dimensions to data

Label Encoding

Pros

 good for data where order doesn't matter (nominal) and you have many values

Cons

 adds bias to models that assume numeric relationships

Ordinal Encoding

Pros

- good for data where order matters (ordinal)
- more memory efficient than one-hot

Cons

 adds bias to models that assume numeric relationships

Data Cleaning

Data Cleaning Goals

Meet baseline data requirements for model training

Ensure data quality to reduce model error

Enforce data format and model fit

Enable data interoperability

Data Cleaning Steps

Encode Non-numeric Variables

Handle Outliers
Combining Data for Improving Model Performance

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Testing if the dataset is sufficient for model development

to be discussed in depth in future Think-a-thons

Domain expertise guides selection of additional data

High Bias

Add additional

Technically, you could add in any and all data that is properly prepared and let the model distinguish useful features for prediction

But, YOUR domain expertise can be a useful guide in deciding which datasets and what variables to include in the model to increase predictive power

Also a place for community input!

Combining technical tests (like bias vs variance) with your domain expertise will create optimal models that also provide useful insights from analyzing feature importance

Data reusability relies on comprehensive data preparation

*We encourage all SCHARE members to create .csv files when uploading to the SCHARE Data Repository

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Data Preparation Goals

Enable data interoperability

Data Preparation Steps

Aligning Data Labels

Variable Transformation

Joining via Common Identifiers

Joining datasets requires common data labels

Dataset 1

Dataset 2

	Participant ID	Age		Participant ID	Age at Enrollment
	001	37		005	48
	002	71		006	24
	003	49		007	83
	004	52		008	55

Aligning Data Labels

Age

Participant ID	Age at Enrollment
005	48
006	24
007	83
008	55

Participant ID	Age	
005	48	
006	24	
007	83	
008	55	

Dataset 2

001	37
002	71
003	49
004	52
005	48
006	24
007	83
008	55

Merge with

Dataset 1

Participant ID

Data Preparation Goals

Enable data interoperability

Data Preparation Steps

Aligning Data Labels

Variable Transformation

Joining via Common Identifiers

Concatenating datasets requires variable alignment

Dataset 1

Participant ID	Age at Enrollment	BPM
001	37	62
002	71	73
003	49	52
004	52	61

Dataset 2

Participant ID	Date of Birth	BPM			
005	1972	63			
006	1984	54			
007	2001	77			
008	1992	61			

Concatenating these sets requires transformation of the age variable

 \hookrightarrow

Variable Transformation

Data Preparation Goals

Enable data interoperability

Data Preparation Steps

Aligning Data Labels

Variable Transformation

Joining via Common Identifiers

Joining datasets with common subjects requires identifiers

Dataset 1		Dataset 2			
ZIP	Population	Town Name	Area (sq. mi)		
01581	20000	Westborough, MA	8		
99701	9000	Fairbanks, AK	30		
27292	15000	Ashburn, VA	3		
33145	23000	Miami, FL	9		

Joining via Common Identifiers

Joining these datasets requires transformation to a common identifier, followed by a join

Dataset 2		Dataset 2		Joined data	aset	
Town Name		ZIP		ZIP	Population	Area (sq. mi)
Westborough, MA		01581		01581	20000	8
Fairbanks, AK		99701		99701	9000	30
Ashburn, VA		27292		27292	15000	3
Miami, FL		33145		33145	23000	9

Data Preparation Goals

Enable data interoperability

Data Preparation Steps

Aligning Data Labels

Variable Transformation

Joining via Common Identifiers

Working with Small Sample Sizes in Health Research

The Challenge

Small samples are common when studying:

- Underrepresented populations
- Rare health conditions
- Specific demographic intersections
- Areas with data access limitations

Why This Matters

- ML algorithms typically expect large datasets
- Small samples can lead to unreliable models
- Critical for accurate representation of all communities

Key Risks

- **Overfitting:** Models learn noise, not patterns
- Limited Generalizability: Findings don't transfer to broader population
- High Variance: Results change dramatically with small data shifts
- **Missed Insights:** Important health differences go undetected

How to Prepare Small Sample Sizes

Strategy	Why it Helps	What is solves
Feature Selection	Reduce dimensionality and noise	Minimizes overfitting and simplifies models with limited data
Robust Imputation	Avoid losing rows—Missing at Random (MAR)-aware techniques preserve data	Preserves dataset size and reduces error from missing data
Data Augmentation	Generate synthetic samples (e.g., SMOTE) for rare subgroups	Mitigates class imbalance and enhances learning from small/rare classes
Cross-validation	Helps get stable estimates from limited data	Reduces variance in model evaluation; more reliable performance metrics
External data merging	Use public datasets to enrich limited features	Expands feature space and improves model generalization

Data Cleaning Summary

Slido Poll

Which of the following is **NOT** a common technique for handling outliers in a dataset?

- a) Removing outliers based on domain knowledge or statistical thresholds
- b) Applying transformations such as log or square root
- c) Imputing outliers with mean or median values
- d) Replacing outliers with random values from a normal distribution
- e) Using robust models that are less sensitive to outliers (e.g., median-based regression)

Data Preparation Notebook

- 1. Register for Terra (if you don't have an account)
- 2. Put your Terra email address (usually gmail) in the form using the link
- 3. Access the workspace
- 4. Open the notebook corresponding with your last initial
- 5. Hit Run in Playground Mode

SCHARE

Thank you

Think-a-Thon poll

1. Rate how useful this session was:

□ Very useful

□ Useful

□ Somewhat useful

 \Box Not at all useful

Think-a-Thon poll

2. Rate the pace of the instruction for yourself:

\Box Too fast

 \Box Adequate for me

 \Box Too slow

Think-a-Thon poll

- 3. How likely will you participate in the next Think-a-Thon?
- \Box Very interested, will definitely attend
- \Box Interested, likely will attend
- \Box Interested, but not available
- \Box Not interested in attending any others

SCHARE

Next Think-a-Thons:

bit.ly/think-a-thons

Register for SCHARE:

https://bit.ly/registerschare

<u>schare@mail.nih.gov</u>