

SCHARE Tutorial Think-a-Thons

SCHARE Research Paradigm Shift: Understanding How Big Data Expands Knowledge

April 16, 2025

Deborah Duran, PhD • NIMHD Elif Dede Yildirim, PhD • NIMHD Mark Aronson, PhD • NIMHD

Health Outcome

Novice **training webinars** for data science, cloud computing and research using Big Data

Generational career & discipline exchange

Think-a-Thons

Goals:

- Upskill novice untrained users in data science and cloud computing
- Foster a research paradigm shift to use
 Big Data in health disparities/health outcomes research
- Promote use of Dark Data

1. TUTORIAL AND TARGETED THINK-A-THONS

- Monthly sessions (2 1/2 hours)
- Instructional/interactive
- Designed for new/experienced users
- Networking
- Mentoring and coaching
- Topics include:
 - Data Science 101
 - Terra
 - Social Determinants of Health analytics

Launched April 2024

3rd

Wednesday

of every month

2 pm

- Common Data Elements
- AI readiness
- Ethical and transparent AI

- Multi-career (students to senior investigators)
- Multi-discipline (data scientists and researchers)
- Featured datasets with guest experts leads
- Guest experts in topic areas, analytics, data sources etc. to provide guidance
- Generate research idea decide design, datasets and analytics
- Learn Ethical AI
- Publications

Register: bit.ly/think-a-thons

Think-a-Thon tutorials

bit.ly/think-a-thons

February	Artificial Intelligence and Cloud Computing 101	resource MSIs)		
March	SCHARE 1 – Accounts and Workspaces	SCHARE for American Indian/		
April	SCHARE 2 – Terra Datasets	Alaska Native Researchers		
May	SCHARE 3 – Terra Google-hosted Datasets	 SCHARE for Coders and Programmers to conduct 		
June	SCHARE 4 – Terra SCHARE-hosted Datasets	research		
July	An Introduction to Python for Data Science – Part 1			
August	An Introduction to Python for Data Science – Part 2			
September	SCHARE 5: A Review of the SCHARE Platform and Data Ecosystem			
October	Preparing for AI 1: Common Data Elements and Data Aggregation			
November	Preparing for AI 2: An Introduction to FAIR Data and AI-ready Datasets			
January	Preparing for AI 3: Computational Data Science Strategies 101			
February/March	Preparing for AI 4: Overview Prep for AI Summary with Transparency, Privacy, Ethics			
April	Research Teams – SDoH and Health Disparities			
Мау	Be a Part of the Future of Knowledge Generation 1: Al/Cloud Computing Basics and CDEs			
July	Be a Part of the Future of Knowledge Generation 2: Al-	Ready Datasets and Computations		

SPECIAL EVENTS

- SCHARE for Educators (Community Colleges and low-(ISIs)
- or American Indian/ tive Researchers

SCHARE Research Think-a-Thon Teams

Team 1 investigates disparities in HPV vaccine uptake and cervical cancer burdens among underserved populations. **Team 3** investigates **disparities in dental care access**, exploring key determinants such as out-of-pocket costs, preventive health behaviors, and socioeconomic factors.

Team 4 examines emergency department utilization, barriers to healthcare access, focusing on geographic disparities, demographics, insurance coverage, and transportation challenges affecting access and utilization of health services.

Team 2 examines potential factors impacting cancer disparities, including cancer survivor status, healthcare coverage, treatment and transportation availability, education, income, support systems, diet, and race/ethnicity.

Team 5 explores the impact of environmental factors on multifaceted aspects of **breast cancer**.

Training pipeline

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Think-a-Thons training/mentoring pipeline

SCHARE Data Science Experts Think-a-Thons ✓ Instructional ✓ Research

• AIM-AHEAD

Using AT experts to train and mentor novice AT users to upskill and mentor diverse perspectives in AI

to increase diverse perspectives in biomedical research

Goal: "Upskilling"

- ✓ Data science specialists into health disparities and health outcomes research
- Health disparities/outcomes researchers into using big data and cloud computing

Target Audience:

- ✓ Novice untrained users in data science
- ✓ Data scientists with no or little research experience

O

 Resource and tool for Community Colleges and lowresource organizations

SCHARE Workshop setup

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

In preparation for the Think-a-Thon

Let's make sure that everyone:

- 1. has provided their Gmail address and has been registered for SCHARE
- 2. has created a Terra account
- 3. can access the tutorial we will be using today at: **bit.ly/schare-python-notebook**
- 4. has configured their cloud environment
- 5. can run the tutorial in playground mode:

If you have already created a Terra account and are logged in, you will see this:

bit.ly/schare-python-notebook

	™ ∕ORKSPACES	Workspaces > ScHARe-To 10_Python Code	Temp/ScHARe Think-a-Thons > analyses Basics.ipynb	•	COVID-19
DASHBOARD	DATA AN	NALYSES WORKFLOWS	JOB HISTORY		:
PREVIEW (READ-O	NLY)	•			Rate: < \$0.03 per hour
the data int In []: # Let's co # We will !gsutil cp !gsutil cp	o our notebook environn py the datasets from t use the gsutil command gs://fc-secure-e1dce7 gs://fc-secure-e1dce7	nent. the ScHARe Think-a-Thons workspac d. 76a-c6a4-4485-9e38-4fab5009513a/F	Thons workspace bucket. To analyze them in ce bucket to the Cloud Environment Vir PythonCodeBasics/IrisDataSet.csv . PythonCodeBasics/TrimmedData_JT.csv . is now in our workspace.		
This python -A few exan visualization		ormed and changedAdditional exam	on code which can be achieved by learning t nples of visualizations using different data ar		
In []: ###Example #Creat a w	1 elcome message for NIH	4			

If you have not logged in, or have not yet created a Terra account, you will see this:

bit.ly/schare-python-notebook

Welcome to Terra Community Workbench

Terra is a cloud-native platform for biomedical researchers to access data, run analysis tools, and collaborate. <u>Learn more about Terra.</u>

If you are a new user or returning user, click log in to continue.

LOG IN

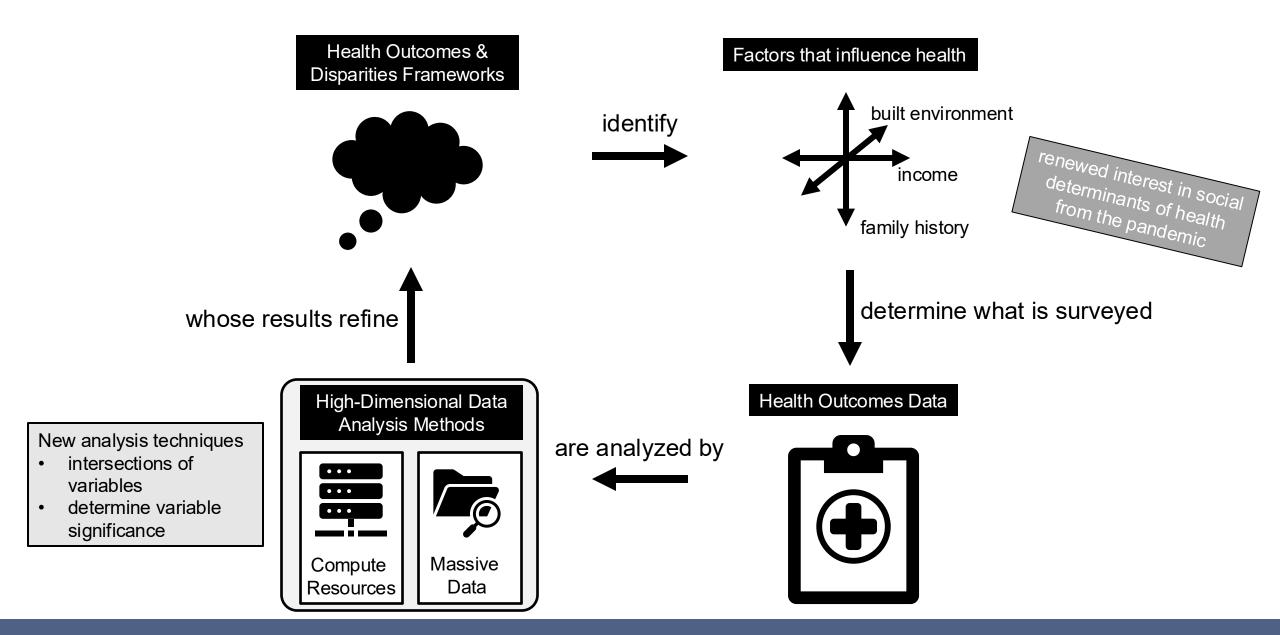
BETA

If you have not yet created a Terra account or registered for SCHARE:

https://bit.ly/registerschare

All registered participants have been added to a free temporary billing project that will allow you to run the event materials with your instructors

You will be active on this billing project for the duration of the Think-a-Thon. If you want to access work-in-progress after this time, you will need to set up your own billing and copy your workspaces to it



SCHARE

A conceptual model for using Al

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Data science is poised to accelerate the health outcomes research cycle

SCHARE

Framing Questions for AI Approaches

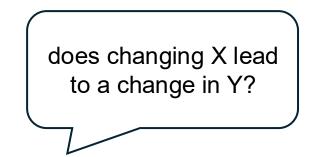
BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

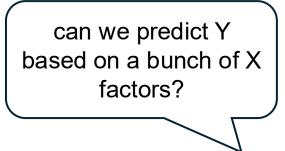
Analysis approaches are tailored to the question and data

Statistical Models

Machine Learning Models

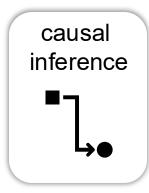
The Research Question

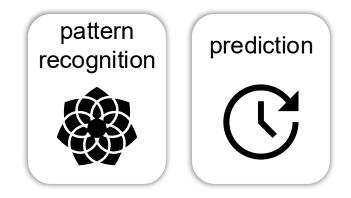

The Data



Research question drives the analysis strategy

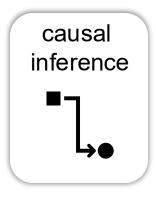
The Research Question

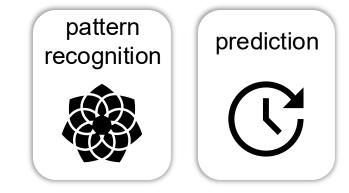




Then your question is of type...

If your question is...


Analysis approaches are tailored to the question and data


Statistical Models

Machine Learning Models

The Research Question

The Data

Machine learning models handle "wide" data better

The Data

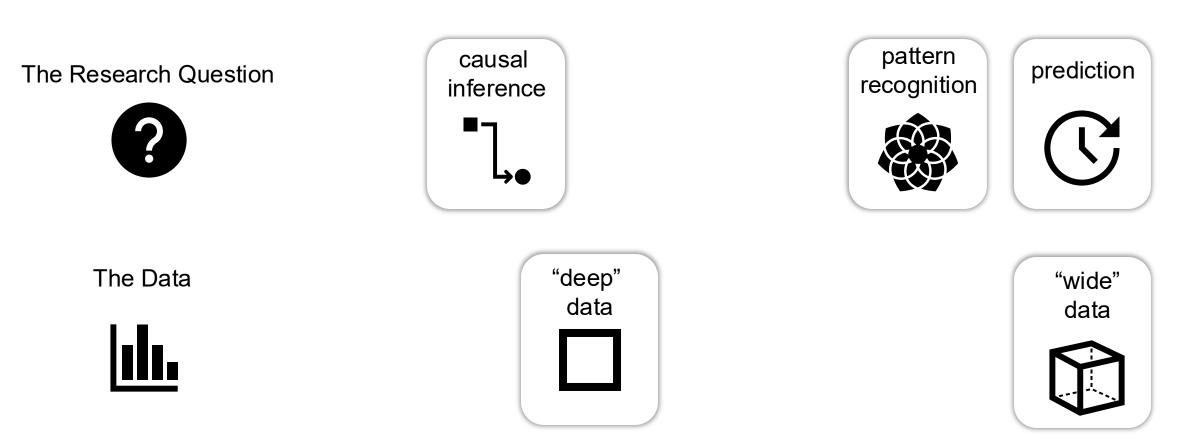
	ſ			l			
Γ	Participant ID	Variable 1	Variable 2	Variable 3	Variable 4	Variable 5	Variable 6
	00001	0	0	2	2	23	0
Imber of rticipants	00002	1	5	3	1	62	0
laopanto	00003	1	3	1	5	72	0
	00004	0	2	2	6	41	1

number of variables

with "wide data" (number of variables >> number of observations), statistical models...

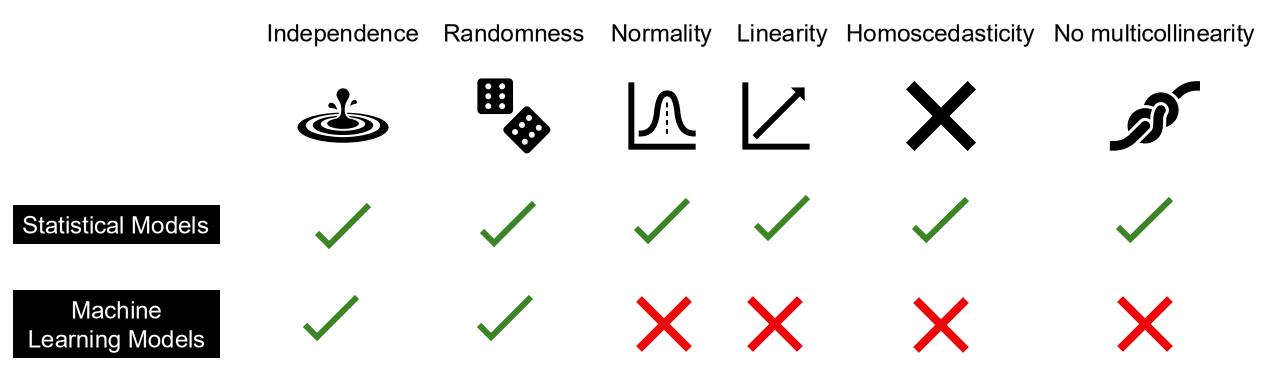
fit themselves to noise

do not generalize outside of the given data does not distinguish between important and unimportant features

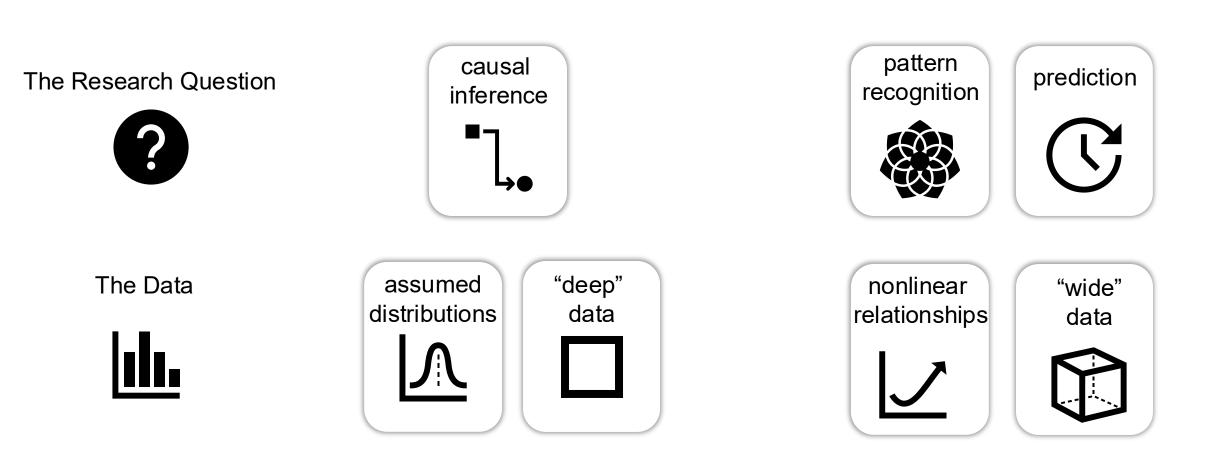


Analysis approaches are tailored to the question and data

Statistical Models


Machine Learning Models

A rule of thumb summary for data requirements


The Data

Analysis approaches are tailored to the question and data

Statistical Models

Machine Learning Models

Example questions and suggested approaches

The Research Question

"How do socioeconomic status, race/ethnicity, and access to healthcare predict disparities in hypertension prevalence, and what are the estimated effect sizes of these factors?"

"Can we predict the risk of hospital readmission among patients from underserved communities using electronic health record (EHR) data, including demographic, clinical, and social determinants of health factors?"

Determining Features

- defined variables of interest
- desire to know effect size of each variable

Suggested Approach

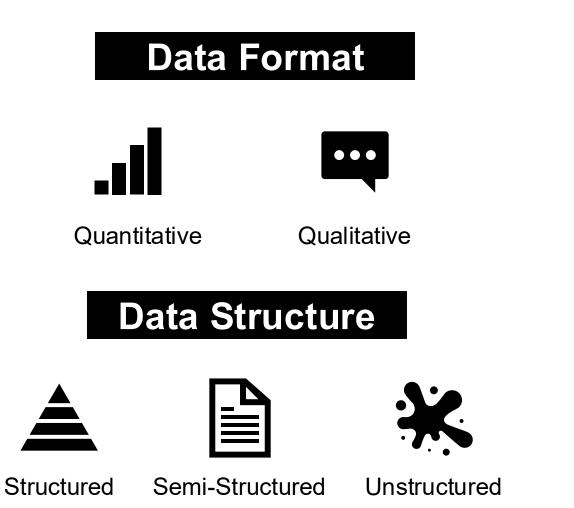
Statistical Model (e.g. linear regression)

- mix of many variable types
- can handle correlated variables
- desire to know personalized risk scores

Machine Learning Model (gradient boosting model, random forest)

Slido Poll

Why are traditional statistical models often not ideal for wide datasets (i.e., datasets with many more features than observations)?


- a) They assume that all features are equally important, which leads to poor predictive performance
- b) They tend to overfit the data and do not generalize well to new data
- c) They perform automatic feature selection, which reduces model flexibility
- d) While they handle missing data well, this is not that common for wide datasets, and therefore not a useful feature

SCHARE

Considerations for Datasets

BE A PART OF THE FUTURE OF KNOWLEDGE GENERATION

Data Categorizations

Data Types

Multimodal Data

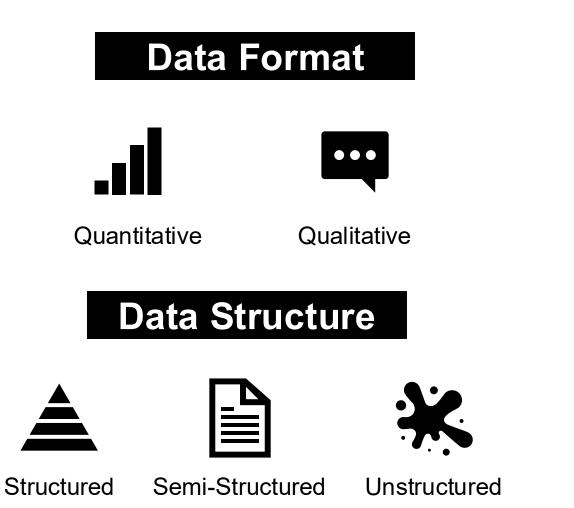
Time-Series

Image

Audio

Data can be in quantitative or qualitative formats

Data Format


Quantitative data is any data that can be represented by a number, including numeric values, categorical data, binary data, and images

Qualitative data is any data representing information and concepts not captured by numbers, such as interview data

Qualitative

Data Categorizations

Data Types

Multimodal Data

Time-Series

Image

Audio

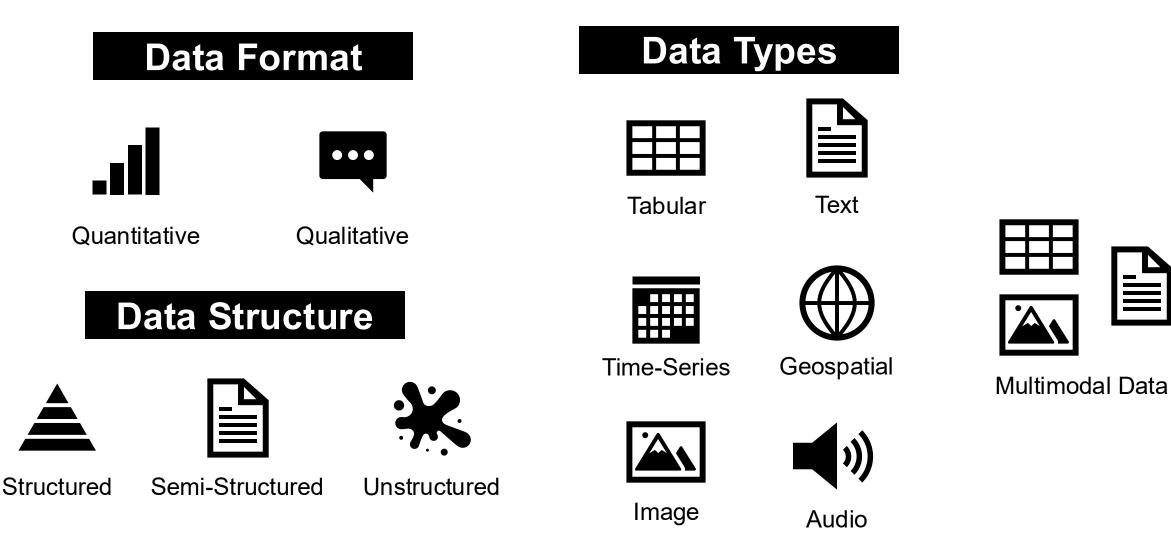
Data can be categorized by structure

Structured data has a fixed schema and fits neatly into rows and columns

Structured

Semi-Structured

Semi-structured data contains elements of both structured and unstructured data, with some data fitting into rows and columns and some data that has open-ended data containing unstructured elements


×

Unstructured

Unstructured data doesn't fit neatly into a data table because its size or nature: for example, audio and video files and large text documents.

Data Structure

Tabular data is the dominant data type for health outcomes research

Data exists in many different types

Data Types

Data represented in tables

Tabular

Data representing events happening over time

Time-Series

Data representing images using pixel values

Text

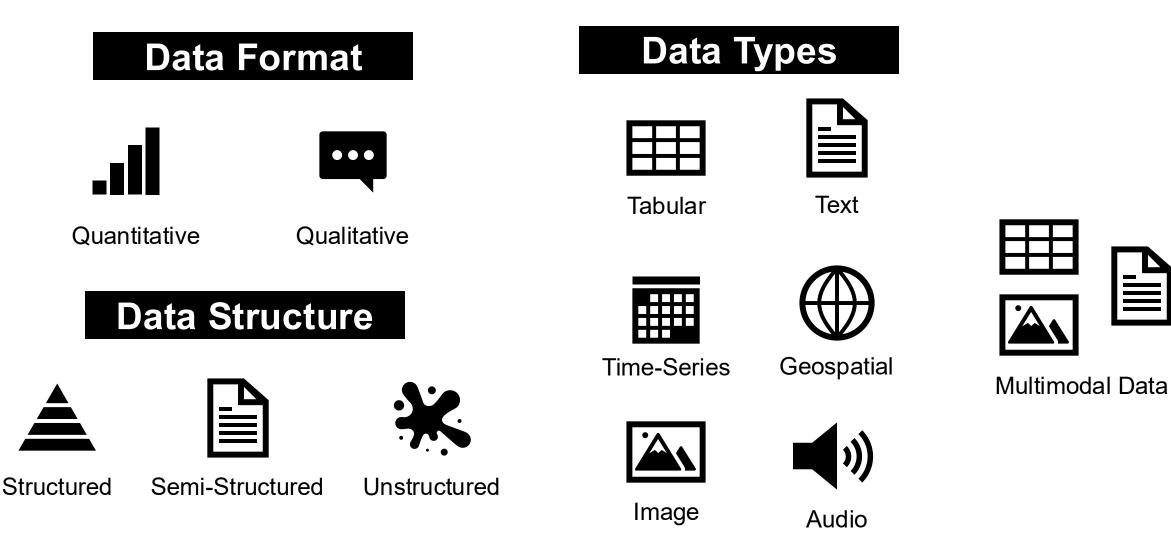
Data composed of text

Data composed of a mix of data types

Geospatial

Data representing geospatial coordinates

Multimodal Data



Data representing audio

Image

Audio

Tabular data is the dominant data type for health outcomes research

Example: SAMHSA National Mental Health Services Survey

National Mental Health Services Survey (N-MHSS)

The National Mental Health Services Survey (N-MHSS) is a source of national- and statelevel data on the mental health services delivery system reported by both publicly and privately operated specialty mental health treatment facilities.

The Data (2020)

	1															
		MHINTAKE	MHDIAGEVAL	MHREFERRAL	SMISEDSUD	TREATMT	ADMINSERV	SETTINGIP	SETTINGRC	SETTINGDTPH	SETTINGOP	FACILITYTYPE	FOCUS	OWNERSHP	PUBLICAGENCY	RELIG
202000001	AK	1	1	. 1	. 1	1	0	0	0	0	1	10	3	3	4	0
202000002	AK	1	1	. 1	. 1	1	1	0	0	0	1	10	3	3	4	0
20200003	AK	1	1	. 1	. 1	1	0	0	0	0	1	10	3	3	5	0
202000004	AK	1	1	. 1	. 1	1	0	0	0	0	1	7	3	3	5	0
202000005	AK	1	1	. 1	. 1	1	0	0	0	0	1	10	3	2	-2	2 0
202000006	AK	1	1	. 1	. 1	1	1	0	0	0	1	8	1	2	-2	2 0
202000007	AK	1	1	1	. 1	0	1	0	1	0	0	3	1	2	-2	2 1
20200008	AK	1	1	. 1	. 0	0	0	0	0	0	1	10	1	1	-2	2 0
202000009	AK	1	1	1	. 1	1	1	0	0	0	1	6	4	3	6	i 0
202000010	AK	1	1	1	. 0	0	1	0	0	0	1	7	1	2	-2	0
202000011	AK	1	1	. 1	. 1	1	1	0	1	0	0	5	1	2	-2	2 0
202000012	AK	1	1	1	. 1	1	1	0	0	0	1	10	3	3	4	0
202000013	AK	1	1	. 1	. 0	1	1	0	1	0	0	3	1	1	-2	2 0
202000014	AK	1	1	. 1	. 1	0	0	1	0	0	0	1	1	3	2	2 0
202000015	AK	1	1	. 1	. 0	0	0	0	1	0	0	5	1	2	-2	2 1
202000016	AK	1	1	. 1	. 1	0	0	0	0	0	1	10	1	2	-2	2 1
202000017	AK	1	1	. 1	. 1	0	1	0	0	0	1	10	1	2	-2	2 0
202000018	AK	1	1	. 1	. 1	1	1	0	0	0	1	7	3	2	-2	2 0
202000019	AK	1	1	. 1	. 1	1	1	0	0	1	1	8	1	2	-2	2 0
202000020	AK	1	1	. 1	. 0	0	1	0	0	0	1	8	1	2	-2	2 0
202000021	AK	1	1	. 1	. 1	1	1	0	0	0	1	10	3	3	5	i 0
202000022	AK	1	1	. 1	. 0	0	1	0	0	0	1	10	1	2	-2	2 0
202000023	AK	1	1	. 1	. 0	0	1	0	0	0	1	7	1	2	-2	0
202000024	AK	1	1	0	0	0	0	1	0	0	0	2	1	2	-2	1
202000025	AK	1	1	1	1	0	0	0	0	0	1	10	1	1	-2	0

Example Data: Binary Values

Cod	eh	ററ	k

MHINTAKE: Facility offers mental health intake (Q.A1)

Variables that take on either a value of 0 or 1

Definition

Value	Label	Frequency	%
0	No	990	8.1%
1	Yes	11,285	91.9%
	Total	12,275	100%

Variable Type: numeric

Raw Data

CASEID	LST	MHINTAKE
202000028	AK	1
202000029	AK	1
202000030	AK	1
202000031	AK	0
202000032	AK	1
202000033	AK	1
202000034	AK	1
202000035	AK	1
202000036	AK	1
202000037	AK	1
202000038	AK	1
202000039	AK	0
202000040	AK	0
202000041	AK	1
202000042	AK	0
202000043	AK	0
202000044	AK	0
202000045	AK	0
202000046	AK	1

Example Data: Categorical Values

Definition

Codebook

FACILITYTYPE: Facility type (Q.A4)

Variables that take on one of a defined preset range of values

Value	Label	Frequency	%
1	Psychiatric hospital	668	5.4%
2	Separate inpatient psychiatric unit of a general hospital	967	7.9%
3	Residential treatment center for children	592	4.8%
4	Residential treatment center for adults	807	6.6%
5	Other type of residential treatment facility	63	0.5%
6	Veterans Administration Medical Center (VAMC)	552	4.5%
7	Community Mental Health Center (CMHC)	2,548	20.8%
8	Certified Community Behavioral Health Clinic (CCBHC)	336	2.7%
9	Partial hospitalization/day treatment facility	429	3.5%
10	Outpatient mental health facility	4,941	40.3%
11	Multi-setting mental health facility	369	3.0%
12	Other	3	0.0%
	Total	12,275	100%

Variable Type: numeric

Raw Data

CASEID	FACILITYTYPE
202000001	10
202000002	10
20200003	10
202000004	7
202000005	10
20200006	8
202000007	3
20200008	10
202000009	6
202000010	7
202000011	5
202000012	10
202000013	3
202000014	1
202000015	5
202000016	10
202000017	10
20200018	7
20200019	8
202000020	8
202000021	10
202000022	10

Example Data: Numeric Data

Definition

Codebook

TOTADMIS: Number of mental health treatment admissions in previous 12-month period (Q.B7)

Value	Label	Frequency	%
0	None	394	3.2%
1	1 to 10	581	4.7%
2	11 to 20	352	2.9%
3	21 to 30	244	2.0%
4	31 to 40	206	1.7%
5	41 to 50	262	2.1%
6	51 to 75	452	3.7%
7	76 to 100	364	3.0%
8	101 to 250	1,244	10.1%
9	251 to 500	1,227	10.0%
10	501 to 1000	1,224	10.0%
11	1001 to 1500	529	4.3%
12	More than 1500	1,026	8.4%
-1	Missing	1,395	11.4%
-2	Logical skip	2,775	22.6%
	Total	12,275	100%

Variable Type: numeric

Raw Data

CASEID	TOTADMIS
202000001	2
202000002	1
20200003	6
202000004	5
202000005	-1
20200006	-1
202000007	1
20200008	0
202000009	-1
202000010	-2
202000011	6
202000012	1
202000013	5
202000014	10
202000015	9
202000016	-1
202000017	2
20200018	6
202000019	-2
202000020	-2
202000021	8
202000022	3
202000023	-2

Variables that have a numeric variable

Slido Poll

Which of the following best describes the difference between structured and unstructured data?

- a) Structured data resides in fixed fields and formats, whereas unstructured data lacks a predefined data model.
- b) Unstructured data can be stored in relational databases, while structured data cannot.
- c) Structured data includes formats like images and audio, while unstructured data includes spreadsheets and SQL tables.
- d) Structured data is always numerical, while unstructured data is always textual.